Cursos


Aula 1 – Resultados Potenciais e Experimentos Randomizados
Gerber, A. S., & Green, D. P. (2012). Field experiments: Design, analysis, and interpretation. Norton & Company, cap. 2.
Rosenbaum, P. (2017). Observation and experiment: An introduction to causal inference. Harvard University Press, cap. 2.
Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, caps. 1 e 2.
Aula 2 – Regressão Linear e Ajuste de Covariáveis
Leitura Obrigatória
Gerber, A. S., & Green, D. P. (2012). Field experiments: Design, analysis, and interpretation. Norton & Company, cap. 4.
Leituras Complementares
Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, caps. 21 e 22.
Rosenbaum, P. (2017). Observation and experiment: An introduction to causal inference. Harvard University Press, cap. 5.
Aula 3 – Matching
Leitura Obrigatória
Rosenbaum, P. (2017). Observation and experiment: An introduction to causal inference. Harvard University Press, cap. 11.
Leituras Complementares
Imbens, G. W., & Rubin, D. B. (2015). Causal inference in statistics, social, and biomedical sciences. Cambridge University Press, caps. 15, 16 e 18.
Rosenbaum, P. R. (2020). Modern algorithms for matching in observational studies. Annual Review of Statistics and Its Application, 7(1), 143-176.
Zubizarreta, J., Stuart, E., Small, D. & Rosebaum, P. (Eds). (2023). Handbook of matching and weighting adjustments for causal inference. CRC Press.
Aula 4 – Diff-in-Diff
Leitura Obrigatória
Cunningham, S. (2021). Causal inference: The mixtape. Yale University Press, p. 259-283.
Leituras Complementares
Rosenbaum, P. (2017). Observation and experiment: An introduction to causal inference. Harvard University Press, p. 162-167.
Angrist, J. D., & Pischke, J. S. (2009). Mostly harmless econometrics: An empiricist’s companion. Princeton University Press, cap. 5.
Aula 5 – Regressão Discontínua
Leitura Obrigatória
Cattaneo, M; Titiunik, Rocío; & Vazquez-Bare, Gonzalo (2020). The Regression Discontinuity Design. In: Sage Handbook of Research Methodsin Political Science & International Relations. Ed. by Luigi Curini and RobertJ Franzese Jr. Sage Publication.
Leituras complementares
Cunningham, S. (2021). Causal inference: The mixtape. Yale university press, p. 151-203.
Cattaneo, M. D., Idrobo, N., & Titiunik, R. (2021). A practical introduction to regression discontinuity designs: Foundations. Cambridge University Press.
Cattaneo, M. D., Idrobo, N., & Titiunik, R. (2024). A practical introduction to regression discontinuity designs: Extensions. Cambridge University Press.
Hanretty, C. (2024). How not to conduct a regression discontinuity design using a continuous measure of democracy. Party Politics. doi:10.1177/13540688241288465.